

Team Introductions

Matthew Archibald ME - Structural Engineer

Donovan Dwight ME - Test Engineer

CE -Communications Systems Engineer

Kyle Mahoney ME - Fabrication Engineer

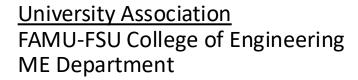
Neil Maldonado EE - Data Systems Engineer

Faculty Sponsor and Advisor

Sponsor
Shayne McConomy,
Ph.D.
ME – Teaching
Faculty II

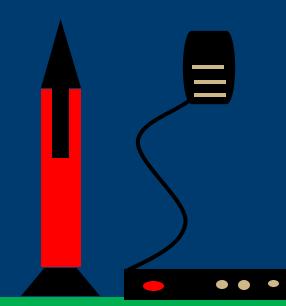
Advisor
Taylor Higgins
Ph.D.
ME – Assistant
Professor

Project Objective


The objective of this project is to design and integrate a payload into a high-powered rocket for the 2025 NASA Student Launch Competition.

Project Association

Government Association
National Aeronautics and Space
Admiration (NASA)


<u>Club Association</u> American Institute of Aeronautics and Astronautics (AIAA)

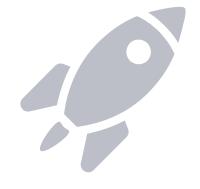
Key Goals

KEY GOAL #1

Maintain high survivability for STEMnauts

KEY GOAL #2

Radio
transmission of
at least three
flight parameters


KEY GOAL #3

Successful integration into full-scale and subscale rockets

Assumptions

Weather

- Average weather conditions
- No precipitation

Rocket

• Rocket functionality

Radio

• FTM-300DR transceiver

Customer Needs

- FAA and NAR rules and regulations.
 - Weight: 0.55lbs
 - Materials selection
 - Fasteners: MIL-SPEC
 - Frequency limitations
- Valid communication license and callsign

• Four STEMnauts during flight test.

Functional Decomposition

Payload

Structure

Data Collection

Transmission

Functional Decomposition (Structure)

Disconnect Payload

Fasten Payload

Structure

Disperse Energy Impact

Secure STEMnauts

Secure Sensors

Functional Decomposition (Data Collection) **Store Apogee Store Acceleration Measure Flight Data Store Velocity Data Collection Store Force Exertion** Measure **Survivability Metrics Track STEMnauts Orientation**

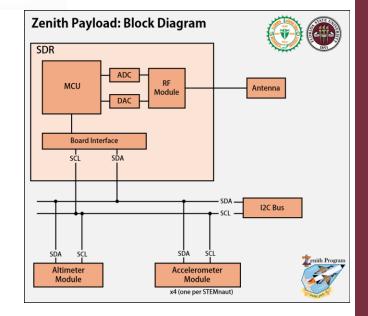
Functional Decomposition (Transmission)

Select Radio Frequency

Deploy Antenna

Transmission

Receive Data Package


Send Data Signal

Club Work

- NASA Deliverables
 - Proposal has been approved
 - Licensing and certifications
- Preliminary Payload Design
 - Layout and fastening method
- STEM Engagement
 - Planning lessons for middle & high school students
 - Aerospace experience opportunities for students
- Engineering
 - Research of components

Future Works

Targets

- Define metrics
- Finalize data collected

Concept Generation

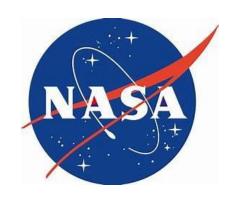
- Choose components
- Meet with the rocket team
- Design analysis

STEMnaut Design

- CAD
- Creativity
- Radio transmission

PDR

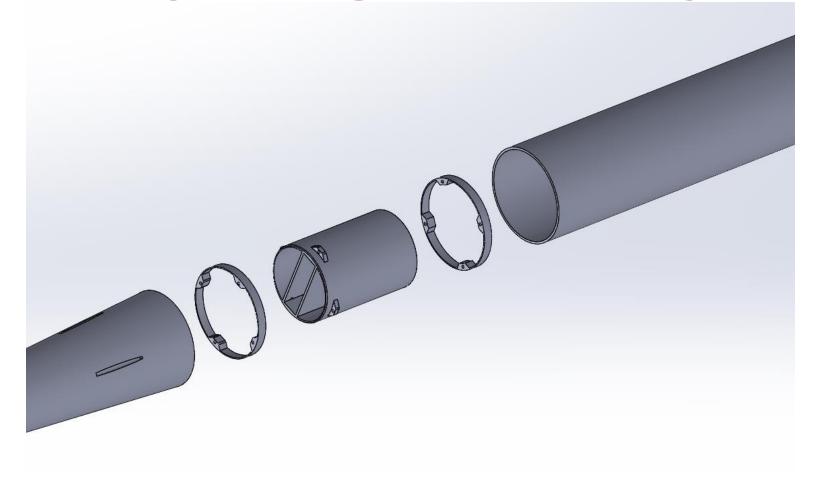
- Preliminary Design Review
- FEA
- Wiring diagram


Artemis 2 Crew – Basis for STEM-naut Design

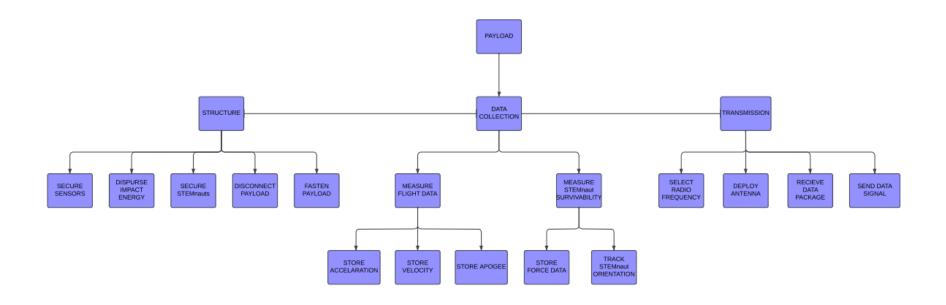
Thank you for listening!

Any questions?

References


NASA. (2025). NASA Student Launch Handbook. Retrieved from https://www.nasa.gov/wp-content/uploads/2024/08/2025-nasa-sl-handbook.pdf?emrc=77b9f2?emrc=77b9f2

Back Up Slides



Preliminary Design Assembly

Entire Functional Decomposition

Font Check

- This is 10-point
- This is 15-point Times
- This is 20–point
- This is 25–point
- This is 30–point
- This is 35—point
- This is 40—point
- •This is 50-point
- •This is 60—point

